3.3: Homogeneous Equations with Constant Coefficients

We restrict our attention to equations of the form

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0 \tag{1}
\end{equation*}
$$

and define the characteristic (or auxiliary) equation by

$$
\begin{equation*}
a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}=0 . \tag{2}
\end{equation*}
$$

Theorem 1. (Distinct Real Roots)
If the roots $r_{1}, r_{2}, \ldots, r_{n}$ of the characteristic equation (2) are real and distinct, then

$$
y(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}+\cdots+c_{n} e^{r_{n} x}
$$

is a general solution to (1).

Example 1. Solve the initial value problem

$$
y^{(3)}+3 y^{\prime \prime}-10 y^{\prime}=0, \quad y(0)=7, y^{\prime}(0)=0, y^{\prime \prime}(0)=70
$$

Theorem 2. (Repeated Roots)
If the characteristic equation (2) has a repeated real root r of multiplicity k, then the part of a general solution of the differential equation (1) corresponding to r is of the form

$$
\left(c_{1}+c_{2} x+\cdots+c_{k-1} x^{k-2}+c^{k} x^{k-1}\right) e^{r x}
$$

Example 2. Find a general solution to the equation

$$
9 y^{(5)}-6 y^{(4)}+y^{(3)}=0 .
$$

Next we wish to consider what happens if we do not have all real roots. In order to do this, we use Euler's formula

$$
\begin{equation*}
e^{i \theta}=\cos \theta+i \sin \theta \tag{3}
\end{equation*}
$$

to give us a hint. Therefore

$$
e^{(a+i b) x}=e^{a x}(\cos b x+i \sin b x)
$$

Theorem 3. (Complex Roots)
If the characteristic equation (2) has a complex root $r=a+i b$, then the part of a general solution of the differential equation (1) corresponding to r is of the form

$$
e^{a x}\left(c_{1} \cos b x+c_{2} \sin b x\right)
$$

Exercise 1. Show that $y(x)=c_{1} \cos b x+c_{2} \sin b x$ is a solution to

$$
y^{\prime \prime}+b^{2} y=0
$$

Example 3. Find the particular solution to the initial value problem

$$
y^{\prime \prime}-4 y^{\prime}+5 y=0, \quad y(0)=1, y^{\prime}(0)=5 .
$$

Exercise 2. Find the general solution to

$$
y^{(4)}+4 y=0 .
$$

Theorem 4. (Repeated Complex Roots)
If the characteristic equation (2) has a repeated complex root $r=a+i b$ of multiplicity k, then the part of a general solution of the differential equation (1) corresponding to r is of the form

$$
\sum_{p=0}^{k-1} x^{p} e^{a x}\left(c_{p} \cos b x+c_{p} \sin b x\right)
$$

Example 4. Find the general solution to the differential equation whose characteristic equation has roots $3,-5,0,0,0,0,-5,2 \pm 3 i$ and $2 \pm 3 i$.

Exercise 3. Find the general solution to the differential equation

$$
y^{(3)}+y^{\prime}-10 y=0 .
$$

Homework. 1-31 (odd)

